

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	MongoTor 0.1.0 documentation 
 
      

    


    
      
          
            
  
Welcome to Mongotor’s documentation!

(MONGO + TORnado) is an asynchronous toolkit for accessing mongo with tornado.


Features



	ORM like to map documents and fields orm

	Advanced connection management (replica sets, slave okay)

	Automatic reconnection

	Connection pooling

	Support for running database commands (find, find_one, count, sum, mapreduce etc...)

	Signals for pre_save, post_save, pre_remove, post_remove, pre_update and post_update

	100% of code coverage by test









Contents:



	Installation
	Supported Installation Methods

	Install via easy_install or pip

	Installing using setup.py

	Checking the Installed MongoTor Version

	Requirements





	Tutorial
	Getting started

	Defining our Collection

	Connecting to the Database

	Creating a new document

	Using ORM in a TornadoHandler

	Using Client in a TornadoHandler

	Using Signals





	API Reference
	database – Database level operations

	collection – A mongo collection

	orm – Map a mongo collection into a python class

	errors – Mongotor errors












Contributing to the project

List of contributors [https://github.com/marcelnicolay/mongotor/contributors]


Source Code

The source is available on GitHub [https://github.com/marcelnicolay/mongotor] and contributions are welcome.




Issues

Please report any issues via github issues [https://github.com/marcelnicolay/mongotor/issues]






Indices and tables


	Index

	Module Index

	Search Page









          

      

      

    


    
         Copyright 2012, Marcel Nicolay.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	MongoTor 0.1.0 documentation 
 
      

    


    
      
          
            
  
Installation


Supported Installation Methods

MongoTor supports installation using standard Python “distutils” or
“setuptools” methodologies. An overview of potential setups is as follows:




Install via easy_install or pip

When easy_install or pip is available, the distribution can be
downloaded from Pypi and installed in one step:

easy_install mongotor





Or with pip:

pip install mongotor





This command will download the latest version of MongoTor from the Python
Cheese Shop [http://pypi.python.org/pypi/mongotor] and install it to your system.




Installing using setup.py

Otherwise, you can install from the distribution using the setup.py script:

python setup.py install








Checking the Installed MongoTor Version

The version of MongoTor installed can be checked from your
Python prompt like this:

>>> import mongotor
>>> mongotor.version 








Requirements

The following three python libraries are required.



	pymongo [http://github.com/mongodb/mongo-python-driver] version 1.9+ for bson library

	tornado [http://github.com/facebook/tornado]







Note

The above requirements are automatically managed when installed using
any of the supported installation methods









          

      

      

    


    
         Copyright 2012, Marcel Nicolay.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	MongoTor 0.1.0 documentation 
 
      

    


    
      
          
            
  
Tutorial

This tutorial is meant to introduce you to the basic concepts of using
MongoTor using an example application. The example application is a
simple user database where people could fill in their information and
register themselves.


Getting started



	Ensure that an instance of MongoDB is running in an accessible
location. This tutorial assumes that such an instance is running on the
localhost.









Defining our Collection

A MongoDB Collection [http://www.mongodb.org/display/DOCS/Collections]
is the rough equivalent of a table in a relational database. Though
MongoDB collections are schemaless documents in them usually have a
similar structure. This “similar structure” could be defined as a
Collection.

In this example application we define the structure of Users collection
with the required field (s)

class User(Collection):
    __collection__ = "user"

    _id = ObjectIdField()
    name = StringField()
    active = BooleanField()
    created = DateTimeField()








Connecting to the Database

A connection to the MongoDB database needs to be established before
MongoTor can manage collections or do any other operations. A
connection is established using a Database
object

from mongotor.database import Database
Database.connect('localhost:27017', 'test_db')








Creating a new document

A new document can be created in the collection by creating an instance of
the Collection, assigning values to the fields and then calling the save
method

new_user = User()
new_user.name = "New user"
new_user.active = True
new_user.save()





A new instance would also be created from a dictionary (for example from a
Form handler in your web application):

>>> new_user = User.create({'name': 'Some user name'})
>>> new_user.name
u'Some user name'
>>> new_user.save()








Using ORM in a TornadoHandler

from mongotor.orm import Collection
from mongotor.orm.field import StringField, ObjectIdField, BooleanField, DateTimeField
from mongotor.database import Database

from datetime import datetime
import tornado.web
from tornado import gen

# A connection to the MongoDB database needs to be established before perform operations
# A connection is stabilished using a Databse object
Database.connect(['localhost:27017'], 'asyncmongo_test')

class User(Collection):

    __collection__ = "user"

    _id = ObjectIdField()
    name = StringField()
    active = BooleanField()
    created = DateTimeField()

class Handler(tornado.web.RequestHandler):

    @tornado.web.asynchronous
    @gen.engine
    def get(self):
        user = User()
        user.name = "User name"
        user.active = True
        user.created = datetime.now()

        yield gen.Task(user.save)

        # update date
        user.name = "New name"
        yield gen.Task(user.update)

        # find one object
        user_found = yield gen.Task(User.objects.find_one, user._id)

        # find many objects
        new_user = User()
        new_user.name = "new user name"
        new_user.user.active = True
        new_user.created = datetime.now()

        users_actives = yield gen.Task(User.objects.find, {'active': True})

        users_actives[0].active = False
        yield gen.Task(users_actives[0].save)

        # remove object
        yield gen.Task(user_found.remove)








Using Client in a TornadoHandler

MongoTor supports Client for direct access to mongo, without orm layer

from mongotor.database import Database
from bson import ObjectId
from tornado import gen, web

class Handler(web.RequestHandler):

    def initialize(self):
        self.db = Database.connect(['localhost:27017'], 'asyncmongo_test')

    @web.asynchronous
    @gen.engine
    def get(self):
        user = {'_id': ObjectId, 'name': 'User Name'}
        yield gen.Task(self.db.user.insert, user)

        yield gen.Task(self.db.user.update, user['_id'], {"$set": {'name': 'New User Name'}})

        user_found = yield gen.Task(self.db.user.find_one, user['_id'])
        assert user_found['name'] == 'New User Name'

        yield gen.Task(self.db.user.remove, user['_id'])








Using Signals

MongoTor supports signals for pre_save, post_save,
pre_remove, post_remove, pre_update, post_update to which receivers could bind to.

from mongotor.orm import collection, field
from mongotor.orm.signal import pre_save, receiver
from mongotor.database import Databas
from bson import ObjectId

import tornado.web
from tornado import gen

class User(collection.Collection):
    __collection__ = "user"

    _id = field.ObjectIdField()
    name = field.StringField()
    active = field.BooleanField()
    created = field.DateTimeField()

@receiver(pre_save, User)
def set_object_id(sender, instance):
    if not instance._id:
        instance._id = ObjectId()


class Handler(tornado.web.RequestHandler):

    @tornado.web.asynchronous
    @gen.engine
    def get(self):
        user = User()
        user.name = "User name"
        user.active = True
        user.created = datetime.now()

        yield gen.Task(user.save)











          

      

      

    


    
         Copyright 2012, Marcel Nicolay.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	MongoTor 0.1.0 documentation 
 
      

    


    
      
          
            
  
API Reference


	
mongotor.version = '0.1.0'

	str(object=’‘) -> string

Return a nice string representation of the object.
If the argument is a string, the return value is the same object.






	
mongotor.Database

	Alias for mongotor.database.Database.





Sub-modules:



	database – Database level operations

	collection – A mongo collection

	orm – Map a mongo collection into a python class

	errors – Mongotor errors









          

      

      

    


    
         Copyright 2012, Marcel Nicolay.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	MongoTor 0.1.0 documentation 

          	API Reference 
 
      

    


    
      
          
            
  
database – Database level operations


	
class mongotor.database.Database

	Database object


	
classmethod connect(*args, **kwargs)

	connect database

this method is deprecated, use init to initiate a new database






	
classmethod disconnect()

	Disconnect to database

>>> Database.disconnect()










	
command(*args, **kwargs)

	Issue a MongoDB command.

Send command command to the database and return the
response. If command is an instance of basestring
then the command {command: value} will be sent. Otherwise,
command must be an instance of dict and will be
sent as is.

Any additional keyword arguments will be added to the final
command document before it is sent.

For example, a command like {buildinfo: 1} can be sent
using:

>>> db.command("buildinfo")





For a command where the value matters, like {collstats:
collection_name} we can do:

>>> db.command("collstats", collection_name)





For commands that take additional arguments we can use
kwargs. So {filemd5: object_id, root: file_root} becomes:

>>> db.command("filemd5", object_id, root=file_root)









	Parameters:	
	command: document representing the command to be issued,
or the name of the command (for simple commands only).


Note

the order of keys in the command document is
significant (the “verb” must come first), so commands
which require multiple keys (e.g. findandmodify)
should use an instance of SON or
a string and kwargs instead of a Python dict.





	value (optional): value to use for the command verb when
command is passed as a string



	**kwargs (optional): additional keyword arguments will
be added to the command document before it is sent























          

      

      

    


    
         Copyright 2012, Marcel Nicolay.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	MongoTor 0.1.0 documentation 

          	API Reference 
 
      

    


    
      
          
            
  
collection – A mongo collection


	
class mongotor.client.Client(database, collection)

	
	
insert(*args, **kwargs)

	Insert a document





	Parameters:	
	doc_or_docs: a document or list of documents to be
inserted

	safe (optional): check that the insert succeeded?

	check_keys (optional): check if keys start with ‘$’ or
contain ‘.’, raising InvalidName
in either case

	callback : method which will be called when save is finished














	
remove(*args, **kwargs)

	remove a document





	Parameters:	






	spec_or_id: a query or a document id

	safe (optional): safe insert operation

	callback : method which will be called when save is finished








	
update(*args, **kwargs)

	Update a document(s) in this collection.





	Parameters:	
	spec: a dict or SON instance
specifying elements which must be present for a document
to be updated

	document: a dict or SON
instance specifying the document to be used for the update
or (in the case of an upsert) insert - see docs on MongoDB
`update modifiers`_

	upsert (optional): perform an upsert if True

	safe (optional): check that the update succeeded?

	multi (optional): update all documents that match
spec, rather than just the first matching document. The
default value for multi is currently False, but this
might eventually change to True. It is recommended
that you specify this argument explicitly for all update
operations in order to prepare your code for that change.














	
find_one(*args, **kwargs)

	Get a single document from the database.

All arguments to find() are also valid arguments for
find_one(), although any limit argument will be
ignored. Returns a single document, or None if no matching
document is found.





	Parameters:	
	spec_or_id (optional): a dictionary specifying
the query to be performed OR any other type to be used as
the value for a query for "_id".

	**kwargs (optional): any additional keyword arguments
are the same as the arguments to find().














	
find(*args, **kwargs)

	Query the database.

The spec argument is a prototype document that all results
must match. For example:





	Parameters:	
	spec (optional): a SON object specifying elements which
must be present for a document to be included in the
result set

	fields (optional): a list of field names that should be
returned in the result set (“_id” will always be
included), or a dict specifying the fields to return

	skip (optional): the number of documents to omit (from
the start of the result set) when returning the results

	limit (optional): the maximum number of results to
return

	timeout (optional): if True, any returned cursor will be
subject to the normal timeout behavior of the mongod
process. Otherwise, the returned cursor will never timeout
at the server. Care should be taken to ensure that cursors
with timeout turned off are properly closed.

	snapshot (optional): if True, snapshot mode will be used
for this query. Snapshot mode assures no duplicates are
returned, or objects missed, which were present at both
the start and end of the query’s execution. For details,
see the snapshot documentation [http://dochub.mongodb.org/core/snapshot].

	tailable (optional): the result of this find call will
be a tailable cursor - tailable cursors aren’t closed when
the last data is retrieved but are kept open and the
cursors location marks the final document’s position. if
more data is received iteration of the cursor will
continue from the last document received. For details, see
the tailable cursor documentation [http://www.mongodb.org/display/DOCS/Tailable+Cursors].

	sort (optional): a list of (key, direction) pairs
specifying the sort order for this query. See
sort() for details.

	max_scan (optional): limit the number of documents
examined when performing the query

	read_preferences (optional): The read preference for
this query.














	
count(callback)

	Get the size of the results among all documents.

Returns the number of documents in the results set






	
distinct(key, callback)

	Get a list of distinct values for key among all documents
in this collection.

Raises TypeError if key is not an instance of
basestring (str in python 3).

To get the distinct values for a key in the result set of a
query use distinct().





	Parameters:	
	key: name of key for which we want to get the distinct values














	
aggregate(*args, **kwargs)

	Perform an aggregation using the aggregation framework on this
collection.





	Parameters:	
	pipeline: a single command or list of aggregation commands

	read_preference










Note

Requires server version >= 2.1.0








	
group(*args, **kwargs)

	Perform a query similar to an SQL group by operation.

Returns an array of grouped items.

The key parameter can be:



	None to use the entire document as a key.

	A list of keys (each a basestring
(str in python 3)) to group by.

	A basestring (str in python 3), or
Code instance containing a JavaScript
function to be applied to each document, returning the key
to group by.










	Parameters:	
	key: fields to group by (see above description)

	condition: specification of rows to be
considered (as a find() query specification)

	initial: initial value of the aggregation counter object

	reduce: aggregation function as a JavaScript string

	finalize: function to be called on each object in output list.





















          

      

      

    


    
         Copyright 2012, Marcel Nicolay.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	MongoTor 0.1.0 documentation 

          	API Reference 
 
      

    


    
      
          
            
  
orm – Map a mongo collection into a python class


	
class mongotor.orm.collection.Collection

	Collection is the base class

This class map a mongo collection into a python class.
You only need to write a class and starts to use the orm advantages.

For example, a simple users collection can be mapping
using:

>>> from mongotor.orm import collection, field
>>> class Users(collection.Collection):
>>>     __collection__ = 'users'
>>>     name = field.StringField()






	
save(*args, **kwargs)

	Save a document

>>> user = Users()
>>> user.name = 'should be name'
>>> user.save()









	Parameters:	
	safe (optional): safe insert operation

	check_keys (optional): check if keys start with ‘$’ or
contain ‘.’, raising InvalidName
in either case










	callback : method which will be called when save is finished








	
remove(*args, **kwargs)

	Remove a document





	Parameters:	






	safe (optional): safe remove operation

	callback : method which will be called when remove is finished








	
update(*args, **kwargs)

	Update a document





	Parameters:	






	safe (optional): safe update operation

	callback : method which will be called when update is finished

	force: if True will overide full document















          

      

      

    


    
         Copyright 2012, Marcel Nicolay.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          previous |

        	MongoTor 0.1.0 documentation 

          	API Reference 
 
      

    


    
      
          
            
  
errors – Mongotor errors


	
class mongotor.errors.Error

	Base class for all mongotor exceptions.






	
class mongotor.errors.InterfaceError

	Raised when a connection to the database cannot be made or is lost.






	
class mongotor.errors.TooManyConnections

	Raised when a pool is busy.






	
class mongotor.errors.InvalidOperationError

	Raised when a client attempts to perform an invalid operation.






	
class mongotor.errors.IntegrityError(msg, code=None)

	Raised when a safe insert or update fails due to a duplicate key error.









          

      

      

    


    
         Copyright 2012, Marcel Nicolay.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	MongoTor 0.1.0 documentation 
 
      

    


    
      
          
            

   Python Module Index


   
   m
   


   
     			

     		
       m	

     
       	[image: -]
       	
       mongotor	
       An asynchronous driver and toolkit for accessing MongoDB with Tornado

     
       	
       	
       mongotor.client	
       a mongo collection

     
       	
       	
       mongotor.database	
       Database level operations

     
       	
       	
       mongotor.errors	
       Mongotor errors

     
       	
       	
       mongotor.orm.collection	
       map a mongo collection to a python class

   



          

      

      

    


    
         Copyright 2012, Marcel Nicolay.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	MongoTor 0.1.0 documentation 
 
      

    


    
      
          
            

Index



 A
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | R
 | S
 | T
 | U
 | V
 


A


  	
      
  	aggregate() (mongotor.client.Client method)
  


  





C


  	
      
  	Client (class in mongotor.client)
  


      
  	Collection (class in mongotor.orm.collection)
  


      
  	command() (mongotor.database.Database method)
  


  

  	
      
  	connect() (mongotor.database.Database class method)
  


      
  	count() (mongotor.client.Client method)
  


  





D


  	
      
  	Database (class in mongotor.database)
  


      	
        
  	(in module mongotor)
  


      


      
  	disconnect() (mongotor.database.Database class method)
  


  

  	
      
  	distinct() (mongotor.client.Client method)
  


  





E


  	
      
  	Error (class in mongotor.errors)
  


  





F


  	
      
  	find() (mongotor.client.Client method)
  


  

  	
      
  	find_one() (mongotor.client.Client method)
  


  





G


  	
      
  	group() (mongotor.client.Client method)
  


  





I


  	
      
  	insert() (mongotor.client.Client method)
  


      
  	IntegrityError (class in mongotor.errors)
  


  

  	
      
  	InterfaceError (class in mongotor.errors)
  


      
  	InvalidOperationError (class in mongotor.errors)
  


  





M


  	
      
  	mongotor (module)
  


      
  	mongotor.client (module)
  


      
  	mongotor.database (module)
  


  

  	
      
  	mongotor.errors (module)
  


      
  	mongotor.orm.collection (module)
  


  





R


  	
      
  	remove() (mongotor.client.Client method)
  


      	
        
  	(mongotor.orm.collection.Collection method)
  


      


  





S


  	
      
  	save() (mongotor.orm.collection.Collection method)
  


  





T


  	
      
  	TooManyConnections (class in mongotor.errors)
  


  





U


  	
      
  	update() (mongotor.client.Client method)
  


      	
        
  	(mongotor.orm.collection.Collection method)
  


      


  





V


  	
      
  	version (in module mongotor)
  


  







          

      

      

    


    
         Copyright 2012, Marcel Nicolay.
      Created using Sphinx 1.2.2.
    

  _static/comment-close.png





_static/minus.png





_static/comment.png





_static/up.png





_static/plus.png





_static/comment-bright.png





_static/down-pressed.png





_static/down.png





_static/file.png





search.html


    
      Navigation


      
        		
          index


        		
          modules |


        		MongoTor 0.1.0 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2012, Marcel Nicolay.
      Created using Sphinx 1.2.2.
    

  

_static/up-pressed.png





_static/ajax-loader.gif





